MA 242 : Partial Differential Equations (August-December, 2018)

A. K. Nandakumaran, Department of Mathematics, IISc, Bangalore

Problem set 4

1. (a) Define the fundamental solution

$$
\phi(x, t)= \begin{cases}\frac{1}{(4 \pi t)^{\frac{\pi}{2}}} \frac{-|x|^{2}}{4 t}, & x \in \mathbb{R}^{n}, t>0 \\ 0, & x \in \mathbb{R}^{n}, t=0 .\end{cases}
$$

Show that ϕ satisfies $\phi_{t}-\Delta \phi=0, x \in \mathbb{R}^{n}, t>0$ and

$$
\lim _{(x, t) \rightarrow\left(x_{0}, 0\right)} \phi(x, t)=0 \text { for } x_{0} \neq 0 .
$$

(b) Show $\int_{\mathbb{R}^{n}} \phi(x, t) d x=1 \forall t>0$.
(c) For $\delta>0$, show that

$$
\lim _{t \rightarrow 0} \int_{|x-y|>\delta} \phi(x-y, t) d y=0
$$

2. Solve the following equation

$$
\begin{cases}\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}} & =0, \quad x \in \mathbb{R}, t>0 \\ u(x, 0) & =f(x)\end{cases}
$$

using Fourier transform (assume appropriate assumption on f).
3. Consider,

$$
\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}=0, \quad x \in \mathbb{R}, t>0
$$

Find all the solution of the from $u(x, t)=\frac{1}{\sqrt{t}} v\left(\frac{x}{2 \sqrt{t}}\right)$.
4. Discuss Irreversibility, Infinite speed of propagation and smoothing effects of the heat equation with examples. (Write 2-pages independently and submit a typed report on or before 05,2018).
5. Let $E(x, t, r)$ be the heat ball and $E(1)=E(0,0,1)$. Show that

$$
\iint_{E(1)} \frac{|y|^{2}}{s^{2}} d y d s=4 .
$$

Use appropriate transformation to evaluate

$$
\iint_{E(r)} \frac{|y|^{2}}{|s|^{2}} d y d s
$$

where $E(r)=E(0,0, r)$.
6. Define

$$
g(t)= \begin{cases}e^{-\frac{1}{t^{\alpha}}}, & t>0 \\ 0, & t \leqslant 0,\end{cases}
$$

with $\alpha>1$ and $u(x, t)=\sum_{k=0}^{\infty} \frac{g^{(k)}}{(2 k)!} x^{2 k}$. Show that this gives infinitely many solutions to heat equation with zero boundary condition.
7. Find a sequence of solutions u_{n} of the 1-dimensional heat equation

$$
\begin{aligned}
& \frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}, \quad x \in(0,2 \pi), t>0 \\
& u(0, t)=u(2 \pi, t)=0
\end{aligned}
$$

using variable separable form. Then formally construct a series of solution. Derive the condition so that the series solution also satisfies $u(x, 0)=f(x)$.
8. Let u satisfies the heat equation $u_{t}-\Delta u=0$ in $\Omega \times(0, T)$ and Γ_{T} is the parabolic boundary. Then following maximum principle holds,

$$
\frac{\sup _{\Omega \times(0, T)}}{} u(x, t)=\sup _{\Gamma_{T}} u(x, t) .
$$

9. Let u satisfies

$$
\begin{aligned}
u_{t}-\Delta u & =u, \quad \text { in } \quad \Omega \times(0, T) \\
u(x, 0) & =0, \quad \text { for } x \in \Omega \\
u(x, t) & =0 \quad \text { on } \partial \Omega \times[0, T]
\end{aligned}
$$

Then, show that $u(x, t)=0$ in $\Omega \times(0, T)$.
10. Solve the following heat equation

$$
\begin{aligned}
u_{t} & =u_{x x}, \quad \text { in } x>0, t>0 \\
u(x, 0) & =g(x), \quad \text { for } x>0 \\
u(0, t) & =0, \quad \text { for } t>0
\end{aligned}
$$

(Hint: use odd extension to write the equation in $\mathbb{R} \times(0, \infty)$).

